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Abstract. We compute the normalisation matrix and Yukawa couplings on the 2-manifold 
in the geometric approximation where the singularities on the Z-orbifold are blown up 
with Eguchi-Hanson metrics. The orbifold limit is discussed in detail from a geometric 
and algebraic point of view, and the results are compared with those obtained using 
algebraic geometry and conformal field theory. 

1. Introduction 

Current candidate ground states of superstrings are of the type M 4 x  K 6  where M4 is 
a maximally symmetric four-dimensional spacetime and K 6  is either a six-dimensional 
manifold of the Calabi-Yau type [l], or a singular object called an ‘orbifold’ by 
physicists [2]. 

A large number of Calabi-Yau manifolds are known [ 1,3,4] and an important 
subset (those of complete intersection) has recently been classified by explicit construc- 
tion [4]. 

The number of orbifolds is also growing rapidly and may offer computational 
advantages. They are often regarded as approximations of underlying Calabi-Yau 
manifolds, but the relationship remains obscure and demands attention. In particular, 
we would like to know to what extent such an ‘approximate manifold’ approximates 
the physics on the manifold proper. Furthermore, the even more radical suggestion 
that we accept singular ‘manifolds’ as legitimate spacetime backgrounds per se does 
not warrant any less attention. 

In the following we try to elucidate these questions by examining a specific manifold 
as explicitly and geometrically as possible. 

Although the Z-manifold [ 1 , 5 ]  discussed here is perhaps somewhat pathological 
as Calabi-Yau manifolds go, it offers the unique advantage that it can be constructed 
in a geometrically intuitive way. Furthermore, its alleged ‘orbifold limit’ is among the 
most popular orbifolds and has been carefully studied [2,7]. 

It is also the three- (complex) dimensional analogue of K3 which is the only 
non-trivial Calabi-Yau manifold in two dimensions. We exploit this fact to bridge the 
conceptual gap between the ‘lowbrow’ techniques (differential geometry) employed 
here, and the powerful but abstract ideas of algebraic geometry. 

After briefly reviewing the construction of the Z-manifold, we give explicit 
expressions for the metric, curvature invariants, harmonic forms and Yukawa couplings. 
In 0 4 we define and discuss their orbifold limits and compare our results on the 
Z-manifold with the purely algebraic arguments of Strominger [ 51, and recent calcula- 
tions by Dixon er al [ 6 ]  on the orbifold. Finally we make contact with algebraic 
geometry and identify the physical meaning of the moduli. 
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2. The 2-manifold 

In the geometric construction of the Z-manifold we start with a 3-torus defined by the 
SU(3) root lattice and then identify points under a Z, group which leaves 27 points 
on the torus fixed [ l ,  5,8]. The resulting object is singular at the fix points and is the 
Z-orbifold. 

To obtain the Z-manifold a mathematician would now 'blow up' the fix points 
with P 2 ,  the complex projective space in two dimensions. 

A completely analogous construction in two dimensions using the SU(2) lattice, 
dividing by Z2 and blowing up with PI gives K3, which became known to physicists 
as a gravitational instanton some years ago [9]. K3 is the only Calabi-Yau in two 
dimensions which is not a torus. To a physicist the 'blowing up' amounts to cutting 
out a ball containing the rotten point and gluing in a smooth manifold excised from 
an appropriate donor space. The existence of such a donor of correct type, i.e. a 
complex non-compact manifold which admits a Ricci-flat metric and is asymptotically 
Euclidean up to a discrete identification, is far from trivial and severly limits the 
number of Calabi-Yau manifolds that can be constructed by this cut-and-paste method. 

Fortunately all such spaces have been classified in all dimensions ('spherical space 
forms') [lo], among which we find the Eguchi-Hanson spaces (EH,,) whose boundary 
at infinity has the topology of S"-'/Z,, that we need for our plugs ( n  = 2 for K3; n = 3 
for Z). 

These spaces admit one-parameter families of Ricci-flat metrics. The scale para- 
meter ( A )  controls the size of the region in which the curvature is located, and by 
making it sufficiently small the overlap region where the plug is glued into the hole 
can be made arbitrarily smooth. 

The EH,,-metric can be found by making a U(n)-invariant ansatz [8, 11, 121: 

gCLB = AS,, + Bz,z, (2.1) 
where the z, are n complex coordinates. By demanding that the metric also be Kahler, 
flat at infinity and Ricci-flat everywhere, we find 

where U = z,z* and 

S = U "  + A'". (2.3) 
This metric is singular when U + 0. That this is only a coordinate singularity can be 
seen by studying the curvature invariants of the metric. 

Using the Riemann tensors recorded in appendix 1 we find the simplest of these 
to be 

(2.4) 

which is finite for all values of U .  

[9] the choice y = (l/n)(z,,)", yi = zi/z,, gives 

ds2=  ly/A12'"-1'[(l+yiyi) dy djj+(l+yiy')"-'(jj,dyyi dy '+y  djjy'dy,)] 

This can also be seen directly from the metric by changing coordinates. Following 

+A2ds2(P,,-1)+ . . . .  ( 2 . 5 )  
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In the limit y + O(yi # 0) (2.5) reduces to the second term, which is the Fubini-Study 
metric on Pn-l .  Thus we have recovered the statement that these singularities should 
be 'blown up' with Pn-l, and we have every reason to believe that the cutting and 
pasting of metrics has produced the 2-manifold. 

3. Yukawa couplings on the 2-manifold 

In the heterotic string compactified on a Calabi-Yau manifold the (for us) observable 
part of the particle spectrum is given by the cohomology classes of forms on the 
manifold [ 11. The only interesting forms on the 2-manifold are (1, 1)-forms; 9 from 
the torus and 27 from the blown-up fix points or, in the language of orbifoldology, 9 
from the untwisted and 27 from the twisted sector. Only the twisted sector is affected 
by the orbifold limit so we restrict our discussion to the construction and coupling of 
these modes. The untwisted sector is discussed in [5]. 

For the purpose of calculating topological invariants like Yukawa couplings [9] 
we may as well choose the unique harmonic representatives of each cohomology class. 
An explicit representation of the harmonic (1, 1)-forms w on the EH,-plugs is easily 
found by noting that they are radial perturbations of the metric: 

w ,U .=qj ,,g,, = Zha,g, ,+zhaa,-g, , .  (3.1) 

This is proved in appendix 2 by a reasoning similar to that used in constructing the 
EH,-metric. 

From (2.1) we find 

= CS,, + Dz,z, (3.2) 

with 

Notice that these modes fall off as U-" at radial infinity. The form is therefore localised 
at the origin (U = 0) so we can approximate the twisted forms on the 2-manifold by 
these forms. For the same reason overlap integrals only have support on the EH,, 
plug. Notice also that the normalisation of these modes is fixed by the normalisation 
of the metric (2.1). 

In order to discuss the orbifold limit we need to know the value of the inner product 
( w ,  w ) ,  which can be written [13] 

where g = det g,, is the square root of the determinant of the real metric. Raising 
indices with the inverse metric we find 

,U = n(n - 1 ) , i 4 w 2  (3.5) 
which depends only on the radial coordinate U = r2 .  The measure in polar coordinates 
is given by 

du d2"- 'n  ( 3 . 6 )  i n ( - l ) n ( n - I  ) / 2  dnz d"f = 2 n - I U n - l  
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and we find for n = 2( K 3 )  and n = 3 (  Z ) :  

( w ,  w )  = A " / n  ( 3 . 7 )  

A =  -2.rriA'. ( 3 . 8 )  

where 

The Yukawa coupling ( K , )  is defined by 

K , , = I W A w A  . . .  A W =  I W n  ( 3 . 9 )  

with w given by ( 3 . 2 ) .  Because of the antisymmetry of the wedge product only factors 
at most quadratic in z, can appear, and we obtain 

K ,  = (-1) (C"  + C"-'Du)  d"z d"5, ( 3 . 1 0 )  

Inserting C and D from ( 3 . 3 )  and integrating gives 

( 3 . 1 1 )  
A" 
n K , = ( - l ) n + ' - = ( - l ) " + ' ( W ,  U ) .  

4. The orbifold limit 

By definition, in the 'orbifold limit' we should recover the flat torus (mod Z,) with 27 
isolated conical sigularities. 

Consider first the curvature invariant (2.4). For any finite U # 0 we see that (RZEM)' 
vanishes when A + 0, while at U = 0 it explodes in the same limit; i.e. in the limit A + 0 
the curvature vanishes outside U = 0, while it goes singular at this point. 

The same result is obtained by studying the metric. From (2.1), valid for U # 0, we 
see that the metric goes flat when A + 0. Near U = 0 we switch to ( 2 . 5 ) ,  which shows 
that when A + O  for any finite y the P,,-,-metric is turned off and the EH,-metric 
explodes. 

Obviously, A + 0 is the orbifold limit. 
Next notice that in the orthogonal basis automatically implied by the EH,-approxi- 

mation both the normalisation matrix ( 3 . 7 )  and the Yukawa coupling ( 3 . 1 1 )  vanish in 
the orbifold limit. 

These results appear inconsistent with those of [ 6 ] ,  where this coupling was 
calculated exactly in the orbifold limit of the string. Omitting the non-perturbative 
contributions, their result for the coupling of the twisted modes is also finite, K = 
( 2 ~ ) ~ 3 - ~ ' ~ r - ' ( : ) ,  but not zero. 

If, however, we insist on canonical normalisation of the kinetic term, then we must 
be more careful. Canonical normalisation is achieved by absorbing ( w ,  U )  into the 
four-dimensional fields. This field redefinition also changes the effective Yukawa 
coupling, which now becomes 

From ( 3 . 7 )  and ( 3 . 8 )  we see that this quantity diverges in the orbifold limit. 
This is in agreement with [ 51, where a very abstract argument led to the conclusion 

that Yukawa couplings diverge while the normalisation vanishes in the limit where 
some of the moduli of the 2-manifold are sent to zero. It only remains to argue that 
the scale parameters on the EH,-plugs are moduli on the manifold. 

;3 = ( U ,  w)-1'2.  ( 4 . 1 )  
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This would be easy if we could represent the manifold algebraically as a polynomial 
constraint in projective space, since then the moduli are simply coefficients in the 
polynomial. By Kodaira's embedding theorem it  is true that all Calabi-Yau manifolds 
are projective algebraic (because hZo = 0) but the algebraic representation of the 
2-manifold is not known at present. Also, it cannot be represented by complete 
intersection which would have been an enormous simplification. This follows from 
the fact that complete intersection Calabi-Yau manifolds all have negative Euler 
number [4] while the Euler number of 2 is 72. 

However, strong circumstantial evidence can be found by studying K3, which not 
only has the geometric construction given above, but can also be represented as the 
complete intersection of a quartic in P 3 .  For definiteness consider the ground state 

4 

p =  1 z : = o  (4.2) 
A = l  

which is smooth because dp  # 0 when p = 0. 
The argument relies heavily on a remarkable observation due to Kodaira [ 141. He 

noted that the space of deformations of the complex structure on the manifold, which 
is the space of tangent bundle valued 1-forms H1(M, T ) ,  is at least partly parametrised 
by the deformations of the defining polynomial p .  We can for example regard the 
monomials missing from p in (4.2) as spanning this space. Furthermore, all manifolds 
with vanishing first Chern class possess a unique holomorphic n-form ('holomorphic 
volume form') which can be used to trade a tangent space index for n - 1 cotangent 
space indices. In other words we have the bundle isomorphism T=R"-'.' which 
induces the group isomorphism 

H1(M, T)=HI(M,R"-'.O)= H " - y M )  (4.3) 

where the last connection to ordinary Dolbeault cohomology follows by Serre duality. 
Hence in two dimensions (K3) the polynomial deformations parametrise the (1, 1)- 

forms, while in three dimensions they parametrise the (2, 1)-forms. This point of view 
was pursued vigorously in [15] to compute the Yukawa couplings on certain three- 
dimensional complete intersection Calabi-Yau manifolds. This reference contains a 
beautifully intuitive description of the polynomial deformation method in terms of 
lapse and shift functions which should be familiar from general relativity. 

We can therefore to some extent count the number of harmonic forms by counting 
coefficients in the most general polynomial of the required degree, in our case quartics. 
Not all deformations change the complex structure however. Any deformation propor- 
tional to a A P  is simply a change of coordinates. This leaves 19 non-trivial deformations 
of p corresponding to 19 of the 20 (1, 1)-forms on K3. Sixteen of these come from 
blowing up fix points. 

There is a simple way to make this manifold singular. Whenever p = q2,  where q 
is some quadric, the manifold is singular because q = 0 satisfies both p = 0 and dp  = 0. 

If we conjecture that this is the orbifold limit of K3, and also believe that the 16 
scale parameters on the 16 EH,-plugs used to blow up the fix points on the K3 orbifold 
are moduli, then there should be a sixteen-parameter family of quartic polynomials 
such that when any coefficient vanishes the quartic degenerates to the square of a 
quadric. In other words, how many different ways can we turn off four of the coefficients 
in the general quartic and still 'complete the square' using only trivial deformations 
(i.e. polynomials in the ideal generated by ad)? The answer is exactly sixteen. 
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We therefore do believe that both the 'moduli limit' and the 'A limit' give the 
Z-orbifold, and we conclude that our geometric arguments are in agreement with the 
abstract algebraic treatment given in [5]. 

We have not, however, succeeded in explaining why the conformal field theory 
calculation on the flat orbifold seems to disagree with the orbifold limit of the result 
obtained on the smooth manifold. It would be of great interest to study this problem 
on a three-dimensional complete intersection Calabi-Yau manifold like, e.g., a quintic 
in P4, where explicit algebraic representations of all the zero modes are known. The 
Yukawa couplings are in this case easy to compute on the manifold, and an orbifold 
limit along the lines sketched above for K3 should be feasible. Furthermore, the 
conformal field theory of this model has recently been constructed [ 161. 

In conclusion, the 'orbifold limit' remains obscure, but it seems likely that studying 
the conformal field theories of complete intersection Calabi-Yau manifolds will shed 
some light on this important question. 
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Appendix 1. Riemann tensors on EH, 

We record here the Riemann tensors on EH,, which are needed for calculating curvature 
invariants. 

The Riemann tensor simplifies greatly on a complex manifold: 
R - - = a  a -  ,gw, - gupapg,pa,ga,. 

In particular, on EH,, the inverse metric is 
g,' = as,'"+ b Z ' L Z B  

with 
a = A-' 

b = -BA-'(A+ Bu)-' 

where A and B are given in (2.2). We find 

R, Bpb = 'I, fipb + sX, ,pb + t Y, +,, 

where 
I - - = a  -6 - + a  - 6 .  

PVPU PO ,U PY 

X,BP, = S,,zpz, + S,,zpz, + S,,Z,Z, + Sp,z,z, 

YFCP, = Z p Z ~ Z p Z ,  

r =  -h2nU-2S('/")-1 

= A2nU-3S(1/n)-2 [ ( n  + 1)u" + A * " ]  

t = - A 2 f l U - 4 a ( ' / n ) - 3  [ ( n +  l ) ( n  +2)u2" +4(n+ l)u"A2" +2h4"]. 

A is the scale parameter and S = U "  + A2". 
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To find the contravariant Riemann tensor 
R#+@ = R I P ~ P " +  S X @ ~ P " +  T Y F ~ P "  

it is easiest to observe that only the b'"'-piece of g*' can contribute to R, which must 
therefore be ra4, and use the Ricci flatness to derive S and T, We find 

R = - ~ Z n ~ 2 ~ - ( 3 / n ) - l  

s = A 2 n U 1 - n ~ - ( 3 / n ) - l  [ ( n + l ) u n + n A 2 " ]  

[ ( n +  l ) ( n  +2)u2" +2n(n + 1)A2"un + n ( n  - 1)A4"]. T = -A  2 n U  - 2 n ~ - O / n  I -  I 

Appendix 2. Harmonic forms on EH, 

We show here that the radial perturbations (3.2) of the metric (2.1) are the harmonic 
(1, 1)-forms on EH,,. 

The ( 1 , l )  form w = wPGdzF ~ d z "  is harmonic (Aw = 0) iff it is curl free (dw = 0) 
and divergence free (d'w = 0). The last condition is not easy to implement so we make 
the observation that it is sufficient that the (1, 1)-form be trace and curl free for its 
divergence to vanish. This is easily established by taking the covariant derivative of 
the trace-free condition 

pw . = o  

V [ p W r ] c = 1 3 d [ p W r ] o  =o.  

U,; = as,, + pzCLz, 

CLY 

and using that the metric is covariantly constant. The curl-free condition is 

Again making a U( n)-invariant ansatz as we did when deriving the metric 

and using the two equations above we find 
cy = ~ ~ - 1 s ( I / n ) - l  

p = -N"2s('/n)-2(A2n + n u " ) .  

With the normalisation N = - A z "  we see that this is precisely the metric perturbation 
(3.2). 
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